
Testing Device Drivers against Hardware Failures
in Real Environments

Satoru Takekoshi
University of Tsukuba

Takahiro Shinagawa
The University of Tokyo

Kazuhiko Kato
University of Tsukuba

The reliability of computer systems has become more
important as the dependency on computer systems for
our modern lives increases. Crashes of computer sys-
tems can results in massive financial or life loss, even
with tens of minutes of downtime. Among others, hard-
ware failures are a major cause of system crashes [4].
Unfortunately, with the wide spread of low-cost com-
modity hardware products, hardware failures has become
inevitable. Therefore, software of computer systems
should tolerate hardware failures as much as possible to
improve reliability.

Device drivers are known to be the weakest com-
ponents of operating systems. A study on operating
system errors [10] reported that Linux drivers had an
error rate up to 7 times higher than the rest of the
kernel. On Windows Vista, millions of crashes were
caused by drivers [11]. Moreover, many device drivers
are vulnerable to hardware failures. A study by Mi-
crosoft [9] showed that 9% of unplanned reboots of Win-
dows servers were due to driver or hardware failures and
the majority of failures were transient. This study also
showed that fault tolerant systems could decrease stor-
age and network adapter failure rates from 8% to 3%,
and claimed that drivers could mask the effects of de-
vice failure by its design. These evidences imply that
(1) poorly implemented drivers are used widely as a part
of products, and (2) drivers can survive some of hardware
failures if properly implemented.

A previous work used source code analysis to find in-
appropriate handling of hardware failures [4]. Unfortu-
nately, this approach cannot test close-source drivers and
has the possibility of false detection. Several works used
symbolic execution to explore the entire code for test-
ing [5, 6, 7]. However, they require virtual environments
specially built for them and has the possibility of miss-
ing side-effect behavior that only occurs in real environ-
ments.

This paper presents FaultVisor, a bare-metal hypervi-
sor for testing device drivers against hardware failures
via fault injection. FaultVisor does not virtualize devices
and allows pass-through access to real hardware, while it
slightly modifies access to the hardware to simulate hard-
ware failures. In cooperation with controller software
running in user mode, target devices and fault patterns
can be configured in runtime easily. In addition, testing
can be repeatedly performed automatically, and the test

cases are reproducible. FaultVisor is transparent from
the guest OS and kernels, and drivers do not need to be
modified. It is also easily inserted into existing systems
to test device drivers in real environments.

We implemented FaultVisor based on BitVisor [3], a
versatile platform for mediating device access used for
various purposes [1, 2]. In current evaluation, FaultVisor
and manual analysis based on the test results identified
41 problems. 30 of the identified problems caused criti-
cal system failures such as crashes or hangs.

References
[1] Yushi Omote et al. “Improving Agility and Elasticity in Bare-

metal Clouds.” In Proceedings of the 20th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’15), 145-159, March 2015.

[2] Yohei Matsuhashi et al. Transparent VPN Failure Recovery with
Virtualization. Future Generation Computer Systems, Elsevier,
Vol. 28, No. 1, pp. 78-84, Jan 2012.

[3] Takahiro Shinagawa et al. BitVisor: A Thin Hypervisor for En-
forcing I/O Device Security. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE 2009), pp. 121-130, Mar 2009.

[4] Asim Kadav et al. ”Tolerating hardware device failures in soft-
ware.” Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. 2009.

[5] Kuznetsov et al. ”Testing Closed-Source Binary Device Drivers
with DDT.” USENIX Annual Technical Conference. 2010.

[6] Vitaly Chipounov et al. ”S2E: A Platform for In Vivo Multi-
Path Analysis of Software Systems”, Proceedings of the 16th
Intl. Conference on Architectural Support for Programming Lan-
guages and Operating Systems. 2011.

[7] Matthew J. Renzelmann et al. ”SymDrive: testing drivers without
devices.” Proceedings of the 10th USENIX conference on Oper-
ating Systems Design and Implementation. 2012.

[8] Man-Lap Li et al. ”Understanding the propagation of hard errors
to software and implications for resilient system design.” ACM
SIGARCH Computer Architecture News. Vol. 36. No. 1. ACM,
2008.

[9] S. Arthur. ”Fault resilient drivers for Longhorn server”, WinHec
2004 Presentation DW04012, 2004

[10] Andy Chou et al. ”An empirical study of operating systems er-
rors.” Vol. 35. No. 5. ACM, 2001.

[11] Microsoft. Microsoft internal memo, disclosed as public ev-
idence in court case 2:07-cv-00475-MJP, Kelley v. Microsoft
Corporation Filing 131. https://docs.justia.com/cases/
federal/district-courts/washington/wawdce/2:

2007cv00475/142597/131 2008.

https://docs.justia.com/cases/federal/district-courts/washington/wawdce/2:2007cv00475/142597/131
https://docs.justia.com/cases/federal/district-courts/washington/wawdce/2:2007cv00475/142597/131
https://docs.justia.com/cases/federal/district-courts/washington/wawdce/2:2007cv00475/142597/131

