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The reliability of computer systems has become more
important as the dependency on computer systems for
our modern lives increases. Crashes of computer sys-
tems can results in massive financial or life loss, even
with tens of minutes of downtime. Among others, hard-
ware failures are a major cause of system crashes [4].
Unfortunately, with the wide spread of low-cost com-
modity hardware products, hardware failures has become
inevitable. Therefore, software of computer systems
should tolerate hardware failures as much as possible to
improve reliability.

Device drivers are known to be the weakest com-
ponents of operating systems. A study on operating
system errors [10] reported that Linux drivers had an
error rate up to 7 times higher than the rest of the
kernel. On Windows Vista, millions of crashes were
caused by drivers [11]. Moreover, many device drivers
are vulnerable to hardware failures. A study by Mi-
crosoft [9] showed that 9% of unplanned reboots of Win-
dows servers were due to driver or hardware failures and
the majority of failures were transient. This study also
showed that fault tolerant systems could decrease stor-
age and network adapter failure rates from 8% to 3%,
and claimed that drivers could mask the effects of de-
vice failure by its design. These evidences imply that
(1) poorly implemented drivers are used widely as a part
of products, and (2) drivers can survive some of hardware
failures if properly implemented.

A previous work used source code analysis to find in-
appropriate handling of hardware failures [4]. Unfortu-
nately, this approach cannot test close-source drivers and
has the possibility of false detection. Several works used
symbolic execution to explore the entire code for test-
ing [5, 6, 7]. However, they require virtual environments
specially built for them and has the possibility of miss-
ing side-effect behavior that only occurs in real environ-
ments.

This paper presents FaultVisor, a bare-metal hypervi-
sor for testing device drivers against hardware failures
via fault injection. FaultVisor does not virtualize devices
and allows pass-through access to real hardware, while it
slightly modifies access to the hardware to simulate hard-
ware failures. In cooperation with controller software
running in user mode, target devices and fault patterns
can be configured in runtime easily. In addition, testing
can be repeatedly performed automatically, and the test

cases are reproducible. FaultVisor is transparent from
the guest OS and kernels, and drivers do not need to be
modified. It is also easily inserted into existing systems
to test device drivers in real environments.

We implemented FaultVisor based on BitVisor [3], a
versatile platform for mediating device access used for
various purposes [1, 2]. In current evaluation, FaultVisor
and manual analysis based on the test results identified
41 problems. 30 of the identified problems caused criti-
cal system failures such as crashes or hangs.
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