
Exit-Less Isolated Execution
Yushi Omote

Japan Society for the Promotion of Science
omote@osss.cs.tsukuba.ac.jp

Takahiro Shinagawa
The University of Tokyo
shina@ecc.u-tokyo.ac.jp

Kazuhiko Kato
University of Tsukuba
kato@cs.tsukuba.ac.jp

Commodity operating systems today rely on a large code
base that is hard to be verified, have broad attack surfaces
and easily get compromised due to mis-configuration or se-
curity bugs. However, the OSs have highest privilege and
unrestrained access to the entire system, and applications
have no way of preventing their security-sensitive infor-
mation (e.g. passwords, encryption keys...) from being re-
vealed or tampered by compromised OSs. Hence mecha-
nisms for securely isolating applications from commodity
OSs are highly required [1–3].

Previous research [2, 3] proposes easy-to-verify thin hy-
pervisors that isolate applications from OSs. The hypervi-
sors force OS and application domains to be mutually in-
accessible by use of nested paging. When execution control
is passed between them (due to jumps, interrupts or system
calls), the hypervisors trap the events and securely perform
context switching between them, properly switching permis-
sion of nested pages.

However, the context switching by the hypervisors causes
costly CPU-mode changes to the hypervisor mode (VM ex-
its), which consume many CPU cycles and heavily pollute
cache. Unfortunately, VM exits due to the context switching
can be continual because it happens whenever applications
are scheduled or invoke system calls, which are more fre-
quent on I/O-intensive workloads. Frequent VM exits result
in high overhead on the system performance.

To avoid the overhead, we propose ELIE (Exit-Less
Isolated Execution): a hypervisor-based scheme for isolat-
ing applications from OSs without VM exits. ELIE com-
pletely eliminates VM exits from the normal execution path
of isolated applications while supporting context switches
for scheduling, interrupts and system calls in a compatible
manner for commodity OSs by leveraging a new Intel CPU
feature: the VMFUNC instruction.

The VMFUNC instruction enables any guest processes to
switch nested page tables (EPTs) without a VM exit. Once
EPTs are pre-configured by a hypervisor, guest processes
can freely choose one of the EPTs by simply executing the
VMFUNC instruction with the ID of an EPT to use as an
argument. ELIE hypervisor pre-configures the two different
EPTs (EPTapp for application execution and EPTos for OS
execution) that share trampoline pages whose permission is
read-only executable on both EPTs (see Figure 1). The hy-
pervisor puts the code in the trampoline pages to force se-
cure context switching between OSs and applications using
VMFUNC instructions. The basic approach of ELIE is that,
whenever the context switching is required, the hypervisor
cleverly leads OSs and applications to enter this trampoline
logic without VM exits.

The first challenge is how to handle interrupts to applica-
tions without VM exits. When the application on EPTapp is
interrupted, the CPU forces a jump to an OS page (an inter-
rupt handler) but causes a VM exit because the OS page per-

, .
Copyright c© DEADBEEF . . . $15.00.
http://dx.doi.org/10.1145/

Trampoline Pages
void StartOrResumeApp(){
 SaveOSContext();
 VMFUNC(Switch to EPTapp);
 InitOrRestoreAppContext();
 ExecAppCode();
 ClearAppContext();
 VMFUNC(Switch to EPTos);
 RestoreOSContext();
}
void IntrHandler(){
 SaveAppContext();
 VMFUNC(Switch to EPTos);
 RestoreOSContext();
 GoToOSIntrHandler();
}

Isolated App. Pages

OS Pages

Permission
by EPTos
(for OS

execution)

R_X R_X

Permission
by EPTapp
(for app.

execution)

RWX

___ RWX

This logic is
visible only
on EPTapp.

Figure 1. The summary view of the trampoline logic of
ELIE hypervisor.

mission is unreadable on EPTapp. The hypervisor avoids the
VM exit using IDT shadowing; the hypervisor forces all in-
terrupts to be handled by its shadow IDT instead of the guest
IDT, and the shadow IDT points to the trampoline interrupt
handler (IntrHandler() in the figure), which executes the
VMFUNC instruction to switch to EPTos before jumping to
the guest interrupt handler. To properly resume the applica-
tion after finishing the guest interrupt handler, the address of
the trampoline code (StartOrResumeApp() in the figure)
is pushed to the OS stack as the return address. On the other
hand, when the OS on EPTos is interrupted, the trampoline
interrupt handler just jumps to the guest interrupt handler.

The second challenge is how to keep the integrity of the
guest page table (GPT). ELIE hypervisor does not control
the GPT to avoid VM exits (e.g. due to CR3 hooks). Hence
although the application asks the OS not to remap applica-
tion pages on the GPT (e.g. mlock()), the malicious OS
can intentionally reorder the pages by modifying the GPT
and break the integrity of application code and data, which
causes malfunction of the application. The hypervisor pre-
vents such attack by configuring EPTapp so that the copy of
the correct GPT always appears at the guest physical address
pointed to by the CR3 value of the application process.

Evaluation results of ELIE prototype show a round-trip
context switching takes only 325 cycles while 2,321 cycles
with conventional exit-full switching on average.

References
[1] X. Chen et al. Overshadow: A Virtualization-based Approach

to Retrofitting Protection in Commodity Operating Systems. In
Proc. of ASPLOS’08, 2008.

[2] Y. Li et al. MiniBox: A Two-way Sandbox for x86 Native Code.
In Proc. of ATC’14, 2014.

[3] J. M. McCune et al. TrustVisor: Efficient TCB Reduction and
Attestation. In Proc. of SP’10, 2010.

