
A Study on GC Performance of ART
Shintaro Hamanaka, Saneyasu Yamaguchi

Electrical Engineering and Electronics, Kogakuin University Graduate School

cm15021@ns.kogakuin.ac.jp, sane@cc.kogakuin.ac.jp

I. INTRODUCTION

The latest Android OS adopts ART as the Android
application runtime environment. ART has several GC
algorithms. Naturally, it is expected that comparing their
performance is important for choosing the suitable GC [1]
according to application behavior. In this paper, we explore
performance of GCs in ART.

II. GC PERFORMANCE EVALUATION

A. Mutator performance and STW time

We performed our benchmark applications using CMS
(Concurrent Mark and Sweep) GC and SS (Semi Space) GC in
ART. In the initialization phase, the benchmark application
creates array of Link objects with length 100,000. A Link object

allocates an array of int type variables with length m and
creates a pointer to another Link instance. m is determined on
creating an instance. m is randomly set using exponential
distribution with average mavg. In the measuring phase, the
benchmark repeats the flowing three things. 1) create a Link
instance. 2) overwrite a randomly selected instance in the Link
array with the new Link instance. 3) change the pointer of the
randomly selected n instances to randomly selected instances.
Random selections in 2) and 3) obey uniform distribution. As a
result of 2), the overwritten instance loses a pointer from the
array. If the lost pointer is the last link to the instance, it becomes
a garbage object. 3) is modification to an instance. Thus, this
causes a re-mask process, which is STW (stop the world), in
CMS GC. In this paper, we call n “link change frequency”.
Experimental times are three minutes.

Fig. 1 and Fig. 2 show mutator performance and STW time.
Performance indicates object creation throughput, which is the
number of repeated operation of 1), 2), and 3) per second. Fig. 1

shows the relation between mavg (average length of array of int
in Link) and results (performance and STW time). Fig. 2 shows
the relation between n (link change frequency) and results. From
these figures, we can say that CMS GC is better than SS GC with
all the cases from the aspects of performance and STW time.
Focusing on the case with large mavg, we can see that the mutator
stopped almost all time.

B. Memory Availability

We repeated 100,000 creations with large mavg and checked
memory availability. The experimental results are shown in Fig.
3. “Success rate” in the figure shows the ratio of the benchmark
finished successfully. If a construction of a new instance fails,
the benchmark application forcefully terminated. This is failure.
If all the constructions, 100,000 times creations, are performed
successfully, the benchmark finishes successfully. The figure
implies that SS GC is better than CMS GC in the aspect of
memory allocation.

From our experiments, we can conclude that CMS GC is
better than SS GC in usual applications, which does not severely
consume memory. On the contrary, SS GC is suitable for
memory-consuming applications.

III. CONCLUSION

In this paper, we investigate GC performance of ART. Our
experimental results shows that CMS GC is suitable for usual
applications, non-memory-consuming application. Contrary, SS
GC should be chosen in cases of applications which heavily
allocate memory.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant
Numbers 24300034, 25280022, 26730040, 15H02696.

[1] Sunil Soman, Chandra Krintz, David F. Bacon, “Dynamic selection of
application-specific garbage collectors,” In Proceedings of the 4th
international symposium on Memory management (ISMM '04). ACM,
New York, NY, USA, 49-60., 2004

Fig. 2 Performance and STW time (vs link change frequency)

0

2

4

6

8

10

12

14

0

20

40

60

80

100

120

140

1 2 4 8 16 32

To
ta

l S
T

W
 T

im
e

 [
se

c]

M
u

ta
to

r
P

e
rf

o
rm

a
n

ce

[t
h

o
u

sa
n

d
 c

re
a

ti
o

n
/s

e
c]

n (links change frequency) [links changes/creation]

CMS SS

CMS STW Time SS STW Time

Fig. 3 Memory availability

0

20

40

60

80

100

0 50 100 150 200 250 300

S
u

cc
e

ss
 r

a
te

[%
]

mavg (average length of array of int in Link)

CMS SS

Fig. 1 Performance and STW time (vs mavg)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

5

10

15

20

25

1 10 100 200 300

ra
ti

o
 o

f
S

T
W

 t
im

e

d
iv

id
e

d
 b

y
 t

o
ta

l
ti

m
e

 [
%

]

M
u

ta
to

r
P

e
rf

o
rm

a
n

ce

[t
h

o
u

sa
n

d
 c

re
a

ti
o

n
/s

e
c]

mavg (average length of array of int in Link)

CMS SS

CMS STW Time SS STW Time

