
Memory Management for Memory-based Inter-Task
Communication on the Hybrid Operating System Node

Mikiko Sato
Tokyo University of Agriculture

and Technology
mikiko@namikilab.tuat.ac.jp

Kazumi Yoshinaga
Yuichi Tsujita
Atsushi Hori

Riken AICS
{kazumi.yoshinaga, yuichi.tsujita,

ahori}@riken.jp

Mitaro Namiki
Tokyo University of Agriculture

and Technology
namiki@cc.tuat.ac.jp

1. INTRODUCTION
Hybrid architecture system has been designed for highly parallel
processing. On such system, multiple OSs manage each CPU and
memory resources. Therefore, tasks running on each OS have to
communicate specifically between CPUs [1]. To prepare common
data space on multiple CPUs, DSM [2] and a single system image
(SSI) [3] have been proposed. However, these approaches require
the management overhead for the data copy for the guarantee of
the consistency on the mutual physical memory. The aim of this
study is to provide a program execution environment that enables
mutual collaboration between tasks on different OSs with little
overhead. This study proposes a page management for the global
virtual address space managed by multiple OS on each CPU. And
this approach enables memory-based communication between
mutual tasks and realizes application programs effectively
utilizing both CPUs on the hybrid architecture system.

2. DESIGN
Our approach is that a single global virtual address space
structured by more than one virtual address space on the different
OS is managed by light-weight method. Each OS manages page
tables and establishes the page table entry to access another
address space. To maintain the consistency of the page table, only
entry of the remote memory accessed by a local task is added to
the local page table. And to reduce a memory management
overhead, the whole range of the global address space is pinned
down. Assignment of physical page and overhead occurrence with
page-in are avoided at the time of memory access with this design.

Figure 1. Remote Memory Access with Local Page Table.

3. IMPLEMENTATION AND EVALATION
The page table structure in Multiple PVAS (M-PVAS) [4] which
applied this study is shown in Fig. 2. It is implemented to the
Linux Kernel on Xeon (X5680, 3.33GHz) and Xeon Phi (5110P,
1.053GHz). In order to investigate the memory management
overhead on different CPUs, the processing time of the page fault
handler was evaluated in M-PVAS. The execution time of a page
fault handler is 1.9us and 8.0us on Xeon and Xeon Phi,
respectively. As shown in Table 1, most time was spent on page
table reference of remote page table and it was heavy. So it’s
necessary to reduce the number of the page fault times for remote

memory accessing. On the M-PVAS, the tasks on the same CPU
can share the same page table, and each OS processes a page fault
handling for the remote RAM only the accessed address to
eliminate the page fault overhead.

Figure 2. Page Table Structure.

Table 1. The processing time details of the page fault handler

4. CONCLUSIONS
This paper proposed the global virtual address space managed by
multiple OSs for the hybrid OS architecture, and showed the basic
evaluation of the memory management overhead. In the future
work, the effect of this method will be evaluated using application
programs on a hybrid system.

5. ACKNOWLEDGMENTS
This research has been partially supported by JST, CREST (Japan
Science and Technology Agency, CREST).

6. REFERENCES
[1] J. Reinders, An Overview of Programming for Intel Xeon processors

and Intel Xeon Phi coprocessors, Intel (2012).
[2] S. Yan, et al., Optimizing a shared virtual memory system for a

heterogeneous cpu-accelerator platform. SIGOPS Oper. Syst. Rev.,
45(1), pp.92-100, Feb. 2011.

[3] ScaleMP. ScaleMP Tech Overview (PDF, complete).
http://community.hartree.stfc.ac.uk/access/content/group/admin/HPC
Training/ScaleMPtrainingcourse2013/ScaleMP_Tech_Overview.pdf.

[4] M. Sato, et al., Design of Multiple PVAS on InfiniBand Cluster
System Consisting of Many-core and Multi-core, EuroMPI/ASIA '14,
pp.133-138, Sep. 9-12, 2014.

