
A Big-data Analytics Framework with
Efficient Support for Dynamic Languages

Luca Salucci
Università della Svizzera Italiana

luca.salucci@usi.ch

Walter Binder
Università della Svizzera Italiana

walter.binder@usi.ch

Daniele Bonetta
Oracle Labs

daniele.bonetta@oracle.com

1. The Problem
Over the last years, several different frameworks have
emerged in the field of big-data analytics. Recent frame-
works tend to expose a developer-friendly API via dynamic
languages such as Python. Despite the benefits offered by
such high-level languages in terms of programming model
and developer productivity, their adoption has been limited
because of the considerable runtime overhead due to ineffi-
ciencies in the integration of the dynamic language support.

In this paper we highlight the advantages of hosting mul-
tiple language runtimes in a single shared virtual machine
and we have shown that it is possible to effectively employ
our technique in the context of Big-data analytics. As a case
study we applied this approach to the Spark runtime, which
runs on top of the JVM, to integrate it with Java based im-
plementations of Python and JavaScript, namely ZipPy [2]
and GraalJS [1].

2. A shared VM for multiple language
runtimes

Our modified runtime is capable of executing Python and
JavaScript on top of the same JVM that executes Spark, un-
like the existing integration of Spark and Python (named
PySpark) which relies on spawning external processes run-
ning Python and communicate with them using Operating
System channels such as pipes, preventing from exploiting
the shared heap of the JVM. On the contrary in our solution
multiple threads are spawned within the JVM and each of
them has access to an instance of the guest language engine,
implemented in Java, thus allowing the threads to execute
the guest language code, for instance Python and JavaScript.

Another major characteristic of our solution is that it
enables cross-boundaries JIT compilation, consisting on
the possibility to perform type specialization on the guest
language and to overcome limitations caused by the dy-
namic type system of the guest language. ZipPy and GraalJS
make use of self-optimizing Abstract Syntax Tree (AST) in-
tepreters [3] and use them to perform JIT compilation of
the guest-language code and produce highly-specialized ma-
chine code based on the type detected at runtime. We argue
that in the context of big-data analytics using dynamic lan-

guages this kind of type specialization optimization can be
particularly effective.

Integrating Python and JavaScript as two different guest
languages for Spark required to handle the generation of
their ASTs and their execution from threads, as well as the
conversions of data to and from the guest language.

We implement some common benchmarks for big-data
analysis, we measured the performance of our proposed so-
lution in the context of a single machine and we compared
them against the performance of PySpark showing that our
runtimes are able to outperform it and to get performance
similar to the original Spark runtime using Scala.

3. Future Work
The work presented in this paper limits to the case of a single
machine, thus it would be interesting to move to a cluster and
perform further evaluations to check if we are still able to get
improvements over PySpark even running ZipPy/Spark and
JS/Spark on a cluster.

Hosting the host and the guest language on the same
shared VM is a first step toward tighter integration between
big-data analytics frameworks and the dynamic language
they support; since in ZipPy/Spark and JS/Spark multiple
languages run on the same VM it would be possible perform
cross language optimizations and we intend to explore in this
direction.

References
[1] Oracle GraalJS. URL http://www.oracle.com/

technetwork/oracle-labs/program-languages/

overview/index-2301583.html.

[2] ZipPy, a fast and lightweight Python implementation. URL
https://bitbucket.org/ssllab/zippy.

[3] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and
C. Wimmer. Self-optimizing ast interpreters. in Proc. of DLS
’12, 48(2):73–82, Oct. 2012. ISSN 0362-1340. .

1 2015/6/24


