
Secure IDS Offloading with
Nested Virtualization in Untrusted Clouds

Shouhei Miyama
Kyushu Institute of Technology
miyama@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@ci.kyutech.ac.jp

In Infrastructure-as-a-Service (IaaS) clouds, users run
their systems in virtual machines (VMs). Since clouds suffer
from attacks more frequently, intrusion detection systems
(IDSes) are indispensable. To prevent IDSes from being dis-
abled by intruders into VMs, IDS offloading with VM in-
trospection has been proposed. This technique runs IDSes
outside VMs and introspects the internals of VMs. However,
cloud administrators are not always trustworthy. If some
of the cloud administrators are malicious, they can easily
disable offloaded IDSes and intrude into VMs without de-
tection.

In such untrusted clouds, secure IDS offloading has been
achieved by assuming the trusted hypervisor. Even if cloud
administrators on the hypervisor attempt to disable offloaded
IDSes, their access to the IDSes is prohibited. For example,
IDSes can run in special VMs protected by the hypervisor in
SSC. Under this assumption, however, average cloud admin-
istrators cannot manage the hypervisor because the integrity
of the hypervisor has to be maintained. To prevent cloud ad-
ministrators from disabling security mechanisms provided
by the hypervisor, they cannot update the hypervisor. There-
fore, it is necessary to give privileges for managing the hy-
pervisor to only a few trusted cloud administrators.

To solve this problem, we propose V-Met, which enables
offloading IDSes outside the entire virtualized system. V-
Met uses nested virtualization to run the traditional virtu-
alized system in a VM, as illustrated in Fig. 1. We call VMs
and the hypervisor in an inner virtualized system guest VMs
and the guest hypervisor. In contrast, we call those in an
outer one host VMs and the host hypervisor. Thanks to this
architecture, V-Met allows average cloud administrators to
completely manage the inner virtualized system including
the hypervisor. In addition, it can prevent them from attack-
ing IDSes running in the outer virtualized system.

V-Met directly introspects the memory of guest VMs
without relying on the untrusted guest hypervisor. It finds
a memory page corresponding to a requested virtual address
in a guest VM and provides the page to offloaded IDSes.
First, it traverses the page tables in a guest VM to translate
virtual into guest physical addresses. The address of the page
directory is stored in the CR3 register of a virtual CPU,

host hypervisor

 guest hypervisor

offloaded
IDS

guest VM guest VM

page
table

EPT

host VM

Figure 1. The system architecture of V-Met.

which is maintained by the guest hypervisor. Since V-Met
cannot trust the state of virtual CPUs in the guest hypervisor,
it configures the host hypervisor so that VM exit occurs
when a guest VM modifies the CR3 register. When the host
hypervisor traps that VM exit, it obtains the value that the
guest VM attempts to write to the register and saves it.

Second, V-Met traverses the extended page tables (EPT)
in the guest hypervisor to translate guest physical into host
physical addresses. The address of the EPT is stored in the
VMCS of a virtual CPU, which is also maintained by the
guest hypervisor. Without introspecting the guest hypervisor,
the host hypervisor saves the host physical address of the
VMCS when a guest VM causes VM exit. Although the
VMCS and the EPT are managed by the untrusted guest
hypervisor, they can be protected by the host hypervisor, as
proposed in CloudVisor.

We have implemented V-Met in Xen 4.4 and ported Tran-
scall [1], which provides an execution environment for of-
floading legacy IDSes. We measured the execution time of
chkrootkit in V-Met and the traditional IDS offloading. Of-
floaded chkrootkit introspects a guest VM and obtains sys-
tem information to detect rootkits. The virtual disk of the
guest VM was shared with chkrootkit using NFS. According
to this experiment, the execution time in V-Met was 25%
longer.

References
[1] T. Iida and K. Kourai. Transcall. http://www.ksl.ci.

kyutech.ac.jp/oss/transcall/.

