lua_syscall: Specializing Operating System Kernels by
Using the Lua Language

Ake Koomsin
University of Tsukuba
ake@softlab.cs.tsukuba.ac.jp

1. INTRODUCTION

An I/O-based application relies heavily on system calls. It
would be beneficial if such an application could reduce the
number of kernel context switches. In current popular op-
erating systems, however, such a reduction is not possible.
If an operating system provides a high-level interface, spe-
cialization to meet the application needs should not be dif-
ficult and will result in an improved performance compared
to the use of a standard interface. We propose system call
scripting that allows developers to create their own system
calls based on existing system calls. This extends the con-
cept of kernel scripting [1]. The objective of this research is
to allow existing operating systems to provide application-
specific specialized services.

2. APPROACH

For kernel service specialization, we use the Lua language
with the LuaJIT compiler. Through this facility, we can
provide the ability for developers to create their own system
calls based on existing system calls. This allows executing
multiple system calls in a single context switch. For this,
we propose two system calls, register_lua_syscall() and
lua_syscall(). The idea behind these system calls is to
encapsulate a Lua state into the file descriptor. The first
system call is used to create a Lua state, register the nec-
essary bindings, load the supplied script into the Lua state,
and return a file descriptor. The next system call takes a file
descriptor to the Lua state and executes it with the given
arguments. Because the Lua state is represented by a file
descriptor, we can use the existing close() system call for
the cleaning up operation.

3. EXPERIMENTS AND RESULTS

To evalueate our idea, we modified Memcached to use the
proposed system call scripting to support UDP batch re-
ceiving and sending. We conducted two experiments to
measure the average response time and number of trans-
actions per second of GET operations. We used Memaslap
for benchmarking through a Facebook test (SET operations
over TCP, and multi-key GET operations over UDP), and
modified it to support the Facebook test using single-key
GET operations. In our experiments, both the original
Memcached and our Memcached were configured to run with
a single worker thread on a single CPU core and 2 GB of
maximum memory to use for object storage. Both ran on
the 32-bit version of FreeBSD 10.1. We configured our Mem-
cached to process 16 messages at a time at most. Memaslap
was run on 4 threads with 128 concurrencies on another ma-
chine running 64-bit Ubuntu 14.04.

Figure 1 shows the experimental results. Through our sys-

Yasushi Shinjo
University of Tsukuba

yas@cs.tsukuba.ac.jp

Average response time
(Server: 1 thread. Client: 4 threads 128 concurrencies.)

1400 | === ‘Original | ' ' ' ' i
[z Our method (Interpreter)
1200 Our method (JIT)

1000

800

Time (us)

600
400 |
200

32B 64B 128B 256B 512B  1024B
Value size

Average transactions per second
(Server: 1 thread. Client: 4 threads 128 concurrencies.)

300000 T T T T

I OriginalI | avavavi]
Our method (Interpreter) h
Our method (JIT)

2 % = —

200000 % £ 5 % B

250000

150000

100000

50000 | R

0 3 g % 3%
32B 64B 128B 2568 512B  1024B

Value size

Figure 1: Experimental results

tem call scripting, we found that we could reduce the aver-
age response time by 33% and achieve 43% more throughput
when the value was small.

4. CONCLUSION

We proposed system call scripting that allows developers to
create their own application-specific system calls based on
existing system calls. This allows executing multiple system
calls in a single context switch. We conducted experiments
on Memcached and found a 33% reduction in the average
response time and a 43% greater throughput when the value
was small.

References

[1] Lourival Vieira Neto, Roberto Ierusalimschy, Ana Li-
cia de Moura, and Marc Balmer. “Scriptable Operating
Systems with Lua”. In: Proceedings of the 10th ACM
Symposium on Dynamic Languages (DLS ’14). 2014,
pp. 2-10.



