A new framework for baremetal OS

Hypervisor is a Device Abstraction Layer

Tori Yoneji'*! Yushi Omote*

iori@osss.cs.tsukuba.ac.jp

omote@osss.cs.tsukuba.ac. jp

Takahiro ShinaganwabJr

shina@ecc.u-tokyo.ac. jp

Kazuhiko Kato!
kato@cs.tsukuba.ac. jp

t: student, I: presenter ?: University of Tsukuba Jr The University of Tokyo i: Japan Society for the Promotion of Science

1. INTRODUCTION

Many devices are introduced in a short period while the society has
been saturated with them. Therefore, today’s general purpose op-
erating systems have the mission to serve a huge number of device
drivers and are needed to increase the number. For example, a snap-
shot of linux 4.1 consists of 17.6 million lines of code, and more than
60% of it is in “drivers/” directory. Also, 22.7% of code of “drivers” is
for network drivers. This fact makes kernel faults to be often, because
device drivers are very fragile. Bugs of device drivers are hisotrically
the largest number and the most often reason of kernel faults[1], and
they are still dominant reason of faults [3]. This situation is hard for
newcomers, that aim to develop new efficient or convenient operating
systems. Such a competitor has less device drivers, and this means
the competitor is less useful in real applications, even if it introduces
better operating system design.

Also, each of operating systems has its own abstraction layers to
unify different devices of the same class that serve similar function-
ality. These layers prevent developers from porting device drivers
from one to another and limit response time and throughput. There-
fore, device drivers from an unique operating system cannot be con-
tributed to another operating system; thus such abstraction layers
are not ideal “abstraction”.

In past study, LeVasseur et al. have shown that virtualization enables
device drivers to be “reused”[2]. While this approach has an advan-
tage that drivers can be reusable without any modification, however,
the original operating system the driver is based on is required to be
run on the virtual machine as the environment for drivers to be run.

Our goal is to eliminate these abstraction layers and offload device
drivers from operating systems. In this poster, we propose a new
device abstraction layer out of and independent of any operating
system. This layer is an ultimately thin hypervisor to conceal real de-
vice and expose para-virtualization device—virtio[4] instead. Virtio,
a de-facto para-virtualization device standard, provides low-latency
and high-throughput virtual devices for virtualized guest operating
systems. By this architecture, the hypervisor takes responsibility for
all of control plane and provides high performance data plane. The
reason we use hypervisor is that virtualization is necessary to handle
virtio access from guest operating systems. Moreover, virtualization
technique enables migration of operating system and memory-space
isolation of operating system from device drivers to protect the op-
erating system from malbehaving device drivers.

Para-virtualization of network devices in present hypervisors like
KVM or Xen, guest operating systems can utilize such devices that
is connected to machine-internal virtual network. So packets sent
from guest operating system are routed along a long path with over-
heads. Our abstraction layer does not perform any operating system
arbitation, does not newly add virtualized device, but just “falsifies”
real device as virtualized device. It is not routing any packets, but
does straight translation from virtio to real devices.

Operating System A’

Operating System B’ THE Device Abstraction Layer

Dependency graph of Figure 2: Dependency graph of OS
and device drivers with DAL

Figure 1:
Present OS and device drivers

2. GOALS
2.1 High applicationability

Because virtio-net is a de-facto standard, almost every major op-
erating systems can run on it. Hence, our device abstraction layer
can be inserted under almost every operating system without any
modification.

2.2 Low overhead

Our abstraction layer is based on a hypervisor named “BitVisor”[5]
that runs only one guest operating system. This hypervisor does
not emulate or intercept for any kind of device accesses including
APIC, ACPI, and BIOS if unnecessary. Because these common and
frequently-accessed devices can controlled by guest directly, the ac-
cesses can be done without any overhead. Also, device abstraction
is without routing or rewriting so it is done in very short time.

EXEIENED

vmx-nonroot Ring0

’ Operating System

,,,,,, DAL/virtio — vmx-root Ring0

thardwar
Figure 3: Architecture of combination of Device Abstraction Layer
and Operating System

2.3 Isolation and Migration

Practically, real devices have internal and unmodifiable states. This
is the reason that nonvirtualized operating systems can not be, or
hard to be migrated. Our abstraction layer is a hypervisor, and
all internal states of virtual devices are settable and gettable, so the
operating system is migratable from one machine to another machine.

REFERENCES

CHOU, A., ET AL. An empirical study of operating systems errors. In Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles (New York, NY, USA, 2001),
SOSP 01, ACM, pp. 73-88.
LEVASSEUR, J., ET AL. Unmodified device driver reuse and improved system dependability
via virtual machines. In Proceedings of the 6th Conference on Symposium on Opearting Systems
Design € Implementation - Volume 6 (Berkeley, CA, USA, 2004), OSDI’04, USENIX
Association, pp. 2-2.

PaLX, N., ET AL. Faults in linux: Ten years later. In Proceedings of the Sizteenth International
Conference on Architectural Support for Programming Languages and Operating Systems (New
York, NY, USA, 2011), ASPLOS XVI, ACM, pp. 305-318.

RusseLL, R. Virtio: Towards a de-facto standard for virtual i/o devices. SIGOPS Oper.
Syst. Rev. 42, 5 (July 2008), 95-103.

SHINAGAWA, T., ET AL. Bitvisor: A thin hypervisor for enforcing i/o device security. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Ezecution
Environments (New York, NY, USA, 2009), VEE ’09, ACM, pp. 121-130.

3.
i

[2]

[3]

[4]



	1 Introduction
	2 Goals
	2.1 High applicationability
	2.2 Low overhead
	2.3 Isolation and Migration

	3 References

