
An Implementation Model for Cloud Storage Systems

Vinh Tao
Scality and Inria-LIP6

vinh.tao@lip6.fr

Vianney Rancurel
Scality

vianney.rancurel@scality.com

João Neto
KTH and Inria-LIP6

joaon@kth.se

Abstract
Cloud storage systems, which essentially are eventually con-
sistent distributed file systems, and their automatic resolu-
tion for conflict updates have been well studied [2]. How-
ever, it remains challenging to make the resolution to work
correctly with more than two replicas in real-world dis-
tributed file systems. In this research, we target the imple-
mentation model for such file systems.

File System We model a file system as a partially ordered
set (poset) in which an element could be a directory, a file,
or an inode. These elements are identified by their unique
absolute path for directories and files or by their unique
inode number for inodes. The binary relation between a
directory and its children is one-to-many while the binary
relation between a directory or a file and their inode is one-
to-one or many-to-one, respectively. Because of the one-to-
one property of their binary relation, we can consider a pair
of a directory and its inode as a single element in the system
model without impacting the correctness of the model.

Divergence and Reconciliation Different replicas of a file
system may differ in their poset structures and/or in the
content of file inodes due to their local updates. All of the
updated elements of a replica in a period of time form a so-
called delta poset which is a subset of the state of that replica
at that moment. A pair of diverged replicas is reconciled by
exchanging their delta posets. A replica would merge its own
delta poset with that of the other replica to compute a merged
delta poset that when applying on a replica would converge
a replica’s state with the other. This process is defined as:{

δ = δA t δB
δ + SA = δ + SB

(1)

where SA and SB are the diverged states of replicas A and
B respectively, δA, δB are their delta posets, t is the merge
operation that computes the least-upper-bound of a pair of
posets, and + is the poset ordered sum operation.

Merging a pair of delta posets is done by simply com-
puting their union. Merging elements appear in either poset
overwrites the other; merging those appear in both posets
may cause conflict that requires conflict resolution, which
in turn may create new unique elements. A full description

of our conflict resolution can be found in another work [2].
Consider the new elements created by the conflict resolution
also exist with the state of deleted in the delta poset of each
replica, merging these delta posets becomes computing their
union—operation that satisfies the requirement of comput-
ing the least-upper-bound of the delta posets by definition.

How do the replicas converge? Consider all replicas start
with the same file system represented by a poset S, each of
the replicas then updates its local file system to generate an
updated file system S′

i that S′
i = δi + S. Merging any pair

of replicas results in δ =
⊔
δi following (1). Then applying

δ to each local state is:

S′′
i = δ + S′

i = δ + δi + S. (2)

with S′′
i is the final state of a replica i. Because δi ⊆ δ thus

δ + δi = δ. Applying to (2) we have S′′
i = δ + S for any i,

which means the replicas converge after exchanging updates.

Reconciling Multiple Diverged Replicas Merging multi-
ple replicas is a pairwise process in which each pair of repli-
cas are merged together; the results from pairwise merging
are then combined together to produce the final outcome.

The pairwise merging process has some important prop-
erties in converging diverged replicas. First, this process is
applied on all combinations of the replicas, it is thus able
to identify all cases of conflict between them. And second,
as merging uses the union operation, the merge function
is idempotent, commutative and associative—these are the
properties for the merge function to converge replicas to-
ward their least-upper-bound poset. Systems with the merg-
ing function that has these properties are also known in liter-
ature as instances of CRDT (Conflict-Free Replicated Data
Type) [1], data types which ensure the eventual consistency
of their replicas without coordination.

References
[1] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.

Conflict-free replicated data types. In Stabilization, Safety,
and Security of Distributed Systems, pages 386–400. Springer,
2011.

[2] V. Tao, M. Shapiro, and V. Rancurel. Merging Semantics for
Conflict Updates in Geo-Distributed File Systems. In Proceed-
ings of the 8th ACM International Systems and Storage Confer-
ence, Systor ’15, New York, NY, USA, 2015. ACM.


